# MATH 132 (Spring 24) • Calculus II • Final

Yeditepe biz geldik ! Üniversitedeki en zor Matematik dersi olarak kabul edilen Math 132 dersi artık düşündüğün kadar zor değil! Dersimizde önce özet konu anlatımlarıyla öğrenecek, sonrasında son yıllardaki çıkmış sınav sorularıyla antreman yapabileceksin.

Bu dersimizde sunduğumuz içerikler sırasıyla: 1) Functions of Several Variables 2) Partial Derivatives 3) Higher Order Derivatives 4) The Chain Rule 5) Tangent Plane 5) Linear Approximation 6) Gradients and Directional Derivative 7) Implicit Differentiation 8) Extreme Values 9) Lagrange Multiplier 10) Double Integrals in Cartesian Coordinates 11) Double Integrals in Polar Coordinates 12) Triple Integrals 13) Change of Variables in Triple Integrals

Ders Tanıtımı

Domain of Multivariable Functions

Level Curves

Level Curves and Level Surfaces

Limits of Multivariable Functions 1

Ücretsiz

Limits of Multivariable Functions 2

Limits of Multivariable Functions 3

The Squeeze Theorem

Continuity of Multivariable Functions

Limit Definition of Partial Derivative

Partial Differentiation Rules 1

Partial Differentiation Rules 2

Higher Order Partial Differentiation

Chain Rule 1

Chain Rule 2

Chain Rule 3

Equation of a Tangent Plane 1

Equation of a Tangent Plane 2

Horizontal Tangent Plane

Ücretsiz

Normal Vector to a Multivariable Function

Tangent Plane Approximation

Ücretsiz

Limit of Multivariable Functions 1

Limit of Multivariable Functions 2

Ücretsiz

Limit of Multivariable Functions 3

Limit of Multivariable Functions 4

Limit of Multivariable Functions 5

Limit of Multivariable Functions 6

Ücretsiz

Limit of Multivariable Functions 7

Limit of Multivariable Functions 8

Limit of Multivariable Functions 9

Limit of Multivariable Functions 10

Continuity 1

Continuity 2

Definition of Partial Derivative 1

Definition of Partial Derivative 2

Ücretsiz

Partial Derivative 1

Partial Derivative 2

Partial Derivative 3

Partial Derivative 4

Partial Derivative 5

Ücretsiz

Partial Derivative 6

Higher Order Differentiation 1

Higher Order Differentiation 2

Higher Order Differentiation 3

Higher Order Differentiation 4

Higher Order Differentiation 5

Tangent Plane 1

Tangent Plane 2

Tangent Plane 3

Tangent Plane 4

Tangent Plane and Normal Line 1

Tangent Plane and Normal Line 2

Tangent Plane and Normal Line 3

Chain Rule 1

Chain Rule 2

Chain Rule 3

Chain Rule 4

Chain Rule 5

Chain Rule 6

Chain Rule and Tangent Plane

Implicit Differentiation I

Implicit Differentiation II

Implicit Differentiation III

Implicit Higher Differentiation

Directional Derivative

Extreme Values

Extreme Values on Restricted Regions 1

Extreme Values on Restricted Regions 2

Optimization With Lagrange Multipliers

Lagrange Multipliers Example-1

Lagrange Multipliers Example-2

Lagrange Multipliers Example-3

Extreme Values 1

Extreme Values 2

Extreme Values 3

Extreme Values 4

Ücretsiz

Extreme Values 5

Extreme Values 6

Extreme Values on Closed Region 1

Extreme Values on Closed Region 2

Extreme Values on Closed Region 3

Extreme Values on Closed Region 4

Extreme Values on Closed Region 5

Ücretsiz

Extreme Values on Closed Region 6

Lagrange Multipliers 1

Lagrange Multipliers 2

Lagrange Multipliers 3

Lagrange Multipliers 4

Lagrange Multipliers 5

Lagrange Multipliers 6

Lagrange Multiplier 7

Intuition: Double Integrals

Ücretsiz

Volume Calculation with Double Integration

Area Calculation with Double Integral

Sketching the Area of Integration 1

Sketching the Area of Integration 2

Sketching the Area of Integration 3

Reversing the Order of Integration 1

Reversing the Order of Integration 2

Reversing the Order of Integration 3

Cartesian to Polar Coordinates 1

Cartesian to Polar Coordinates 2

Polar to Cartesian Coordinates

Double Integrals in Polar Coordinates 1

Double Integrals in Polar Coordinates 2

Double Integrals in Polar Coordinates 3

Double Integrals in Polar Coordinates 4

Triple Integrals 1

Triple Integrals 2

Ücretsiz

Triple Integrals 3

Important Functions and Their Graphs

Triple Integrals 4

Reversing the Order of Triple Integrals

Reversing the Order of Integration 1

Reversing the Order of Integration 2

Reversing the Order of Integration 3

Ücretsiz

Reversing the Order of Integration 4

Double Integral in Polar Coordinate 1

Double Integral in Polar Coordinate 2

Double Integral in Polar Coordinate 3

Double Integral in Polar Coordinate 4

Double Integral in Polar Coordinate 5

Double Integral in Polar Coordinate 6

Double Integral in Polar Coordinate 7

Double Integral in Polar Coordinate 8

Double Integral in Polar Coordinate 9

Double Integral in Polar Coordinate 10

## Eğitmen

Dorukhan Özcan
Co-Founder & CEO

Unicourse şirketinin kurucu ortağıyım. 2016 senesinde Galatasaray Lisesinden mezun oldum. Geçtiğimiz dört sene içerisinde 2000 saatten fazla ders anlattım. Anlattığım dersler sırasıyla; Calculus, Çok değişkenli Calculus, Lineer Cebir, Differansiyel Denklemler, Uygulamalı İstatistik ve Stokastik Modelleme dersleridir. Doping Hafıza şirketinde 2017 - 2022 seneleri arasında CEO danışmanlığı yaptım. Koç Üniversitesi Endüstri Mühendisliği ve Ekonomi çift anadal programını tam burslu olarak, 3.96/4.00 not ortalamasıyla bitirdim. Kadıköy Modalıyım.

899 TL
Hemen Al