MATH 152 • Calculus II • Midterm II

Atılım biz geldik! Üniversitedeki zor Matematik derslerinden biri olarak kabul edilen Math 152 dersi artık düşündüğün kadar zor değil! Dersimizde önce özet konu anlatımları ve kitaptaki ödev sorularının çözümleriyle öğrenecek, sonrasında son yılların çıkmış sınav sorularıyla antreman yapabileceksin.

Bu dersimizde sunduğumuz içerikler: 1. Functions of Several Variables 2. Limits and Continuity 3. Partial Derivatives 4. Higher Order Derivative 5. The Chain Rule 6. Implicit Functions 7. Gradient and Directional Derivatives 8. Linear Approximations, Differentiability 9. Extreme Values 10. Extreme Values of Functions Defined on Restricted Domains 11. Lagrange Multipliers 12. Double Integrals 13. Iteration of Double Integrals in Cartesian Coordinates 14. Double integrals in Polar coordinates

Konular

Ders Tanıtımı

Domain of Multivariable Functions

Level Curves

Level Curves and Level Surfaces

Graphs of Surfaces

Ücretsiz

Limits of Multivariable Functions 1

Ücretsiz

Limits of Multivariable Functions 2

Limits of Multivariable Functions 3

Multivariable Squeeze Theorem

Continuity of Multivariable Functions

Limits with Polar Coordinates

Limit of Multivariable Functions

Limit of Multivariable Functions

Ücretsiz

Limit of Multivariable Functions

Limit of Multivariable Functions

Limit of Multivariable Functions

Limit of Multivariable Functions

Ücretsiz

Limit of Multivariable Functions

Limit of Multivariable Functions

Limit of Multivariable Functions

Limit of Multivariable Functions

Limit of Multivariable Functions

Limit of Multivariable Functions

Limit of Multivariable Function

Limit of Multivariable Function

Limit of Multivariable Function

Limit of Multivariable Function

Limit of Multivariable Function

Limit of Multivariable Function

Continuity

Continuity

Limit Definition of Partial Derivative

Partial Differentiation Rules 1

Partial Differentiation Rules 2

Higher Order Partial Differentiation

Implicit Differentiation I

Implicit Differentiation II

Implicit Differentiation III

Implicit Higher Differentiation

Chain Rule 1

Chain Rule 2

Chain Rule 3

Directional Derivative

Equation of a Tangent Plane 1

Equation of a Tangent Plane 2

Horizontal Tangent Plane

Ücretsiz

Normal Vector to a Multivariable Function

Tangent Plane Approximation

Ücretsiz

Definition of Partial Derivative

Definition of Partial Derivative

Ücretsiz

Partial Derivative

Partial Derivative

Partial Derivative

Partial Derivative

Partial Derivative

Ücretsiz

Partial Derivative

Higher Order Differentiation

Higher Order Differentiation

Higher Order Differentiation

Higher Order Differentiation

Higher Order Differentiation

Partial Derivative - Implicit

Partial Derivative - Implicit - Formula

Chain Rule

Chain Rule

Chain Rule

Chain Rule

Chain Rule

Chain Rule

Chain Rule and Tangent Plane

Tangent Plane

Tangent Plane

Tangent Plane

Tangent Plane

Tangent Plane and Normal Line

Tangent Plane and Normal Line

Tangent Plane and Normal Line

Tangent Plane Approximation

Tangent Plane Approximation

Tangent Plane Approximation

Tangent Plane Approximation

Extreme Values

Extreme Values on Restricted Regions 1

Extreme Values on Restricted Regions 2

Optimization With Lagrange Multipliers

Lagrange Multipliers Example-1

Lagrange Multipliers Example-2

Lagrange Multipliers Example-3

Extreme Values

Extreme Values

Extreme Values

Extreme Values

Ücretsiz

Extreme Values

Extreme Values

Extreme Values on Closed Region

Extreme Values on Closed Region

Extreme Values on Closed Region

Extreme Values on Closed Region

Extreme Values on Closed Region

Ücretsiz

Extreme Values on Closed Region

Lagrange Multipliers

Lagrange Multipliers

Lagrange Multipliers

Lagrange Multipliers

Lagrange Multipliers

Lagrange Multipliers

Lagrange Multipliers

Intuition: Double Integrals

Ücretsiz

Volume Calculation with Double Integration

Area Calculation with Double Integral

Sketching the Area of Integration 1

Sketching the Area of Integration 2

Sketching the Area of Integration 3

Reversing the Order of Integration 1

Reversing the Order of Integration 2

Reversing the Order of Integration 3

Cartesian to Polar Coordinates 1

Cartesian to Polar Coordinates 2

Polar to Cartesian Coordinates

Double Integrals in Polar Coordinates 1

Double Integrals in Polar Coordinates 2

Double Integrals in Polar Coordinates 3

Double Integrals in Polar Coordinates 4

Reversing the Order of Integration

Reversing the Order of Integration

Reversing the Order of Integration

Ücretsiz

Reversing the Order of Integration

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Double Integral in Polar Coordinate

Eğitmen

Dorukhan Özcan
Co-Founder & CEO

Unicourse şirketinin kurucu ortağıyım. 2016 senesinde Galatasaray Lisesinden mezun oldum. Geçtiğimiz dört sene içerisinde 2000 saatten fazla ders anlattım. Anlattığım dersler sırasıyla; Calculus, Çok değişkenli Calculus, Lineer Cebir, Differansiyel Denklemler, Uygulamalı İstatistik ve Stokastik Modelleme dersleridir. Doping Hafıza şirketinde 2017 - 2022 seneleri arasında CEO danışmanlığı yaptım. Koç Üniversitesi Endüstri Mühendisliği ve Ekonomi çift anadal programını tam burslu olarak, 3.96/4.00 not ortalamasıyla bitirdim. Kadıköy Modalıyım.

799 TL
Hemen Al