Çankaya Üniversitesi'ne özel dersler, soru çözümleri ve çıkmış sorular seni bekliyor. Hemen üye ol ve ücretsiz midterm dersini dene.
Ücretsiz Dersi AlÇankaya biz geldik! Üniversitedeki zor Matematik derslerinden biri olarak kabul edilen Math 158 dersi artık düşündüğün kadar zor değil! Dersimizde önce özet konu anlatımları ve kitaptaki ödev sorularının çözümleriyle öğrenecek, sonrasında son yılların çıkmış sınav sorularıyla antreman yapabileceksin.
Bu dersimizde sunduğumuz içerikler: 1. Multivariable Functions 2. Limits and Continuity in Higher Dimensions 3. Partial Derivatives 4. Higher Order Derivatives 5. The Chain Rule 6. Gradients and Directional Derivatives 7. Implicit Functions 8. Extreme Values 9. Extreme Values of Functions Defined on Restricted Domains 10. Lagrange Multipliers 11. Double Integrals 12. Iteration of Double Integrals in Cartesian Coordinates 13. Double Integrals in Polar Coordinates 14. Triple Integrals in Rectangular Coordinates
Multivariable Functions
Domain of Multivariable Functions
Level Curves
Level Curves and Level Surfaces
Graphs of Surfaces
Limits and Continuity of Multivariable Functions
Limits of Multivariable Functions 1
Limits of Multivariable Functions 2
Limits of Multivariable Functions 3
Multivariable Squeeze Theorem
Continuity of Multivariable Functions
Limits with Polar Coordinates
Exam Practice (Limit and Continuity)
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Function
Limit of Multivariable Function
Limit of Multivariable Function
Limit of Multivariable Function
Limit of Multivariable Function
Limit of Multivariable Function
Continuity
Continuity
Partial Differentiation
Limit Definition of Partial Derivative
Partial Differentiation Rules 1
Partial Differentiation Rules 2
Higher Order Partial Differentiation
Implicit Differentiation
Implicit Differentiation I
Implicit Differentiation II
Implicit Differentiation III
Implicit Higher Differentiation
The Chain Rule
Chain Rule 1
Chain Rule 2
Chain Rule 3
Gradient and Directional Derivatives
Gradient Vector
Directional Derivative
Gradient and Directional Derivative
Tangent Plane
Equation of a Tangent Plane 1
Equation of a Tangent Plane 2
Horizontal Tangent Plane
Normal Vector to a Multivariable Function
Linear (Tangent Plane) Approximation
Tangent Plane Approximation
Exam Practice (Partial Diff., Chain Rule, Tangent Plane, Directional Der.)
Definition of Partial Derivative
Definition of Partial Derivative
Partial Derivative
Partial Derivative
Partial Derivative
Partial Derivative
Partial Derivative
Partial Derivative
Higher Order Differentiation
Higher Order Differentiation
Higher Order Differentiation
Higher Order Differentiation
Higher Order Differentiation
Partial Derivative - Implicit
Partial Derivative - Implicit - Formula
Chain Rule
Chain Rule
Chain Rule
Chain Rule
Chain Rule
Chain Rule
Chain Rule and Tangent Plane
Tangent Plane
Tangent Plane
Tangent Plane
Tangent Plane
Tangent Plane and Normal Line
Tangent Plane and Normal Line
Tangent Plane and Normal Line
Tangent Plane Approximation
Tangent Plane Approximation
Tangent Plane Approximation
Tangent Plane Approximation
Gradient and Tangent Plane
Gradient and Tangent Plane
Gradient and Tangent Plane
Gradient and Directional Derivative
Gradient and Directional Derivative
Gradient and Directional Derivative
Gradient and Directional Derivative
Gradient and Directional Derivative
Gradient and Directional Derivative
Gradient and Directional Derivative
Extreme Values
Extreme Values
Extreme Values on Restricted Regions 1
Extreme Values on Restricted Regions 2
Lagrange Multipliers
Optimization With Lagrange Multipliers
Lagrange Multipliers Example-1
Lagrange Multipliers Example-2
Lagrange Multipliers Example-3
Exam Practice (Extreme Values, Lagrange)
Extreme Values
Extreme Values
Extreme Values
Extreme Values
Extreme Values
Extreme Values
Extreme Values on Closed Region
Extreme Values on Closed Region
Extreme Values on Closed Region
Extreme Values on Closed Region
Extreme Values on Closed Region
Extreme Values on Closed Region
Lagrange Multipliers
Lagrange Multipliers
Lagrange Multipliers
Lagrange Multipliers
Lagrange Multipliers
Lagrange Multipliers
Lagrange Multipliers
Double Integrals in Cartesian Coordinates
Intuition: Double Integrals
Volume Calculation with Double Integration
Area Calculation with Double Integral
Sketching the Area of Integration 1
Sketching the Area of Integration 2
Sketching the Area of Integration 3
Reversing the Order of Integration 1
Reversing the Order of Integration 2
Reversing the Order of Integration 3
Double Integral in Polar Coordinates
Cartesian to Polar Coordinates 1
Cartesian to Polar Coordinates 2
Polar to Cartesian Coordinates
Double Integrals in Polar Coordinates 1
Double Integrals in Polar Coordinates 2
Double Integrals in Polar Coordinates 3
Double Integrals in Polar Coordinates 4
Exam Practice (Double Integral)
Reversing the Order of Integration
Reversing the Order of Integration
Reversing the Order of Integration
Reversing the Order of Integration
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Double Integral in Polar Coordinate
Triple Integrals
Introduction to Triple Integrals
Triple Integrals 2
Triple Integrals 3
Important Functions and Their Graphs
Triple Integrals 4
Triple Integrals 5
Triple Integrals 6
Reversing the Order of Integration
Double or Triple Integral
Volume with Double or Triple Integral 1
Volume with Double or Triple Integral 2
Volume with Double or Triple Integral 3
Unicourse şirketinin kurucu ortağıyım. 2016 senesinde Galatasaray Lisesinden mezun oldum. Geçtiğimiz dört sene içerisinde 2000 saatten fazla ders anlattım. Anlattığım dersler sırasıyla; Calculus, Çok değişkenli Calculus, Lineer Cebir, Differansiyel Denklemler, Uygulamalı İstatistik ve Stokastik Modelleme dersleridir. Doping Hafıza şirketinde 2017 - 2022 seneleri arasında CEO danışmanlığı yaptım. Koç Üniversitesi Endüstri Mühendisliği ve Ekonomi çift anadal programını tam burslu olarak, 3.96/4.00 not ortalamasıyla bitirdim. Kadıköy Modalıyım.
999 TL