Midterm dersin bizden!

Medipol Üniversitesi'ne özel dersler, soru çözümleri ve çıkmış sorular seni bekliyor. Hemen üye ol ve ücretsiz midterm dersini deneyimle.

Ücretsiz Dersi Al

IND 2119550FinalLinear Algebra

Medipol biz geldik ! IND 2119550 dersi düşündüğün kadar zor değil; Dersimizdeki özet konu anlatımları ve kitabınızdaki bölüm sonu soru çözümleriyle konuyu öğrenecek, sonrasında son yılların çıkmış sınav sorularıyla antreman yapacaksın.

Tamamen senin okuluna özel hazırlanmış bu içerik akışıyla Lineer Cebir dersininden istediğin notu alacaksın.

Konular

Ders Tanıtımı

Vector Properties

Linear Combination 1

Ücretsiz

Linear Combination 2

Ücretsiz

Formal Definition of Linear Combination

Ücretsiz

Span of Vectors 1

Ücretsiz

Span of Vectors 2

Solutions of Homogeneous Linear Systems

Exam-like Question 1

Exam-like Question 2

Exam-like Question 3

Solutions of Non-Homogeneous Linear Systems

Exam-like Question 1

Ücretsiz

Exam-like Question 2

Exam like Question 3

Exam like Question 4

Ücretsiz

Linear Independent Sets

Linear Independence of Matrices

Special Theorem for Matrix Equation

Exam-like Questions 1

Exam-like Questions 2

Exam-like Question 3

Exam-like Question 4

Vector Spaces and Subspaces

Matrix Spaces & Matrix Subspaces

Polynomial Subspaces

Exam like Question 1

Exam like Question 2

Exam like Question 3

Exam like Question 4

Exam like Question 5

Ücretsiz

Exam like Question 6

Ücretsiz

Exam like Question 7

Exam like Question 8

Exam like Question 9

Ücretsiz

Exam like Question 10

Exam like Question 11

Exam like Question 12

Null Space & Column Space & Row Space

Bases for Col A & Row A & Null A

Exam like Question

Basis for Vector Subspaces

Basis for Matrix Subspaces

Basis for Polynomial Subspaces

Basis for Polynomial Subspaces 2

Coordinate Systems : Introduction

Coordinate Systems : Polynomials

Exam-like Question 1

Exam-like Question 2

Exam-like Question 3

Exam like Question 4

Exam like Question 5

Coordinate Systems : Matrices 1

Coordinate Systems : Matrices 2

Coordinate Systems : Matrices 3

Coordinate Systems : Matrices 4

Change of Basis : Vector Spaces

Change of Basis : Polynomials

Change of Basis: Matrices

Linear Transformations 1

Linear Transformation 2

Ücretsiz

Matrix of a Linear Transformation

Linearity of Transformations

Inverse of Linear Transformation 1

Inverse of Linear Transformation 2

Basis for Kernel and Range of a Transformation

Basis for Kernel and Range of a Transformation 2

Basis for Kernel and Range of a Transformation 3

Linear Independence of Matrices

Basis for Kernel and Range of a Transformation 4

Basis for Kernel and Range of a Transformation 5

Basis for Kernel and Range of a Transformation 6

Transformation Matrix Relative to Basis 1

Transformation Matrix Relative to Basis 2

Transformation Matrix Relative to Basis 3

Exam like Question 1

Exam like Question 2

Ücretsiz

Eigenvalues & Eigenvectors : 3 Vital Steps

Ücretsiz

Eigenvalues & Eigenvectors: A Special Tip

Ücretsiz

A Matrix with Irrational Eigenvalues

Algebraic and Geometric Multiplicities 1

Algebraic and Geometric Multiplicities-2

Eigenspace of Matrices

Diagonalization 1

Diagonalization 2

Exam like Question

Span of Vectors

Span of Vectors

Span of Vectors

Span of Vectors

Span of Vectors

Linear Independence

Linear Independence

Linear Independence

Linear Independence

Null & Column & Row Spaces 1

Null & Column & Row Spaces 2

Ücretsiz

Null & Column & Row Spaces 3

Null & Column & Row Spaces 4

Null & Column & Row Spaces 5

Ücretsiz

Column,Null and Row Spaces 1

Column,Null and Row Spaces 2

Column,Null and Row Spaces 3

Basis for Subspaces (Vectors)

Basis for Subspaces (Vectors)

Basis for Subspaces (Vectors)

Basis for Subspaces (Vectors)

Basis for Subspaces (Matrices)

Basis for Subspaces (Matrices)

Basis for Subspaces (Matrices)

Basis for Subspaces (Matrices)

Basis for Subspaces (Matrices)

Basis for Subspaces (Matrices)

Basis for Subspaces (Matrices)

Basis for Subspaces (Matrices)

Basis for Subspaces (Polynomials)

Basis for Subspaces (Polynomials)

Basis for Subspaces (Polynomials)

Basis for Subspaces (Polynomials)

Spanning Sets (Vectors)

Spanning Sets (Vectors)

Spanning Sets (Vectors)

Spanning Sets (Vectors)

Spanning Sets (Polynomials)

Spanning Sets (Polynomials)

Spanning Sets (Polynomials)

Spanning Sets (Matrices)

Linear Independence of Polynomials

Linear Transformations

Linear Transformations

Linear Transformations

Linear Transformations

Linear Transformation

Ücretsiz

Linear Transformation

Inverse of Linear Transformation

Inverse of Linear Transformation

Composite of Linear Transformation

Reflection of a Transformation

Reflection of a Transformation

Reflection of a Transformation

Basis for Kernel and Range

Ücretsiz

Basis for Kernel and Range

Basis for Kernel and Range

Basis for Kernel and Range

Ücretsiz

Transformations & Change of Basis 1

Transformations & Change of Basis 2

Transformations & Change of Basis 3

Transformations & Change of Basis 4

Transformations & Change of Basis 5

Transformations & Change of Basis 6

Transformations & Change of Basis 7

Transformations & Change of Basis 8

Transformations & Change of Basis 9

Eigenvalues

Diagonalization

Diagonalization

Diagonalization

Diagonalization

Diagonalization

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Eğitmen

Dorukhan ÖzcanDorukhan Özcan
Co-Founder & CEO

Unicourse şirketinin kurucu ortağıyım. 2016 senesinde Galatasaray Lisesinden mezun oldum. Geçtiğimiz dört sene içerisinde 2000 saatten fazla ders anlattım. Anlattığım dersler sırasıyla; Calculus, Çok değişkenli Calculus, Lineer Cebir, Differansiyel Denklemler, Uygulamalı İstatistik ve Stokastik Modelleme dersleridir. Doping Hafıza şirketinde 2017 - 2022 seneleri arasında CEO danışmanlığı yaptım. Koç Üniversitesi Endüstri Mühendisliği ve Ekonomi çift anadal programını tam burslu olarak, 3.96/4.00 not ortalamasıyla bitirdim. Kadıköy Modalıyım.

999 TL

Bu ders ile kazanacakların:

  • Üniversitene özel hazırlanmış dersleri izle
  • Çıkmış soruları ve çözümlerini gör
  • Örnek sınav sorularıyla pratik yap
  • Anlamadığın yerleri tekrar et
  • İstediğin yerden eriş
  • Kendi hızında öğren