Bu ders ile hem bir sürü soru çözmüş, hem kendini denemiş, hem de konuların püf noktalarını öğrenmiş olacaksın.
Kolayca yüksek notlar alabilmen için özenle hazırlanmış video derslerlerimizi izle. Çıkma ihtimali yüksek ve çıkmış soruların soru çözümleriyle sınava en iyi şekilde hazırlan. Hızını sen ayarla. İstediğin yerde hızlandırır, dersleri istediğin kadar tekrar et.
Propositional Logic
Introduction
Negation of a Proposition
Compound Propositions
Truth Table 1
Truth Table 2
Tautology
Contradiction
Converse Inverse Contrapositive
Practice Problem 1
Practice Problem 2
Practice Problem 3
Logical Equivalences & De Morgans'
Logical Equivalences 1
Logical Equivalences 2
De Morgans' Law
Example 1
Example 2
Example 3
Example 4
Quantifiers and Translations
Universal Quantifiers
Existential Quantifiers
Truth Value of Propositions with Quantifiers
Example 1
Example 2
Nested Quantifiers
Example 3
Example 4
Negation of Nested Quantifiers
Example 5
Translations
Example 6
Example 7
Exam-like Question 1
Translation of Statements With Multiple Variables
Rules of Inferences
Valid Argument
Rules of Inferences
Example 1
Example 2
Example 3
Using Rules of Inferences to Build Arguments
Example 4
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
Past Exams & Sample Midterm Part I
Truth Table & Tautology (Fall 2022)
Logical Equivalances (Spring 2023)
Logical Equivalances (Spring 23: Make-Up)
Logical Equivalances (Summer 2020)
Logical Equivalances (Spring 2017)
Tautology (Fall 2022)
Quantifiers 1
Quantifiers 2
Quantifiers (Spring 2023)
Quantifiers (Spring 2023: Make-UP)
Quantifiers 3
Nested Quantifiers 1
Nested Quantifiers 2
Translations (Fall 2020)
Translations (Summer 2020)
Translations (Spring 2019)
Proof Techniques Part I
Direct Proof
Example 1
Example 2
Example 3
Example 4
Proof by Contrapositive
Example 1
Example 2
Example 3
Proof by Contradiction
Example 1
Example 2
Proof Techniques Part II
Proof By Cases
Example 1
Example 2
Example 3
Proofs of Equivalence
Example 1
Example 2
Mathematical Induction
Introduction
Proof of Formulas by Induction
Example 1
Example 2
Example 3
Example 4
Proof of Divisibility by Induction
Example 1
Example 2
Proof of Inequality by Induction
Example 1
Example 2
Induction Related to Fibonacci
Strong Induction
Past Exams & Sample Midterm Part II
Direct Proof 1
Direct Proof 2
Direct Proof 3
Direct Proof 4
Proof by Contrapositive (Fall 2020)
Proof by Contrapositive 1
Proof by Contrapositive 2
Proof by Contrapositive 3
Proof by Contradiction 1
Proof by Contradiction 2
Proof by Contradiction (Fall 2022)
Proof by Contradiction 4
Proof by Contradiction 5
Proof by Contradiction (Fall 2020)
Proof by Cases 1
Proof by Cases 2
Proofs of Equivalence 1
Proofs of Equivalence 2
Proofs of Equivalence 3
Induction for Formulas 1
Induction for Formulas 2 (Fall 2017)
Induction for Formulas 3 (Summer 2020)
Induction for Formulas 4 (Spring 2023)
Induction for Formulas 5 (Spring 23: Make-Up)
Induction Proof for Divisibility 1
Induction Proof for Divisibility 2
Direct Proof & Induction (Spring 2023)
Direct Proof & Induction (Spring 23: Make-Up)
Induction for Inequalities 1
Induction for Inequalities 2 (Fall 2022)
Induction Proof for Inequalities 3
Induction with Fibonacci (Spring 2019)
Induction with Fibonacci (Fall 2020)
Sets
Definition and Notation
Subset
Example 1
Union and Intersection of Two Sets
Difference of Two Sets
Set Identities
Example 2
Power Set
Example 3
Cartesian Product
Example 4
Example 5
Proof Example 1
Proof Example 2
Functions
Definition of Function
Example 1
Number of Functions
Injective Functions
Example 2
Example 3
Example 4
Number of Injective Functions
Surjective Functions
Example 5
Example 6
Example 7
Bijective Function
Inverse Function
Example 8
Example 9
Past Exams & Sample Midterm Part III
Proofs & Sets 1
Proofs & Sets 2
Proofs & Sets 3 (Spring 2023)
Proofs & Sets 4
Proofs & Sets 5
Proofs & Sets 6
Proofs & Sets 7 (Spring 2023 - Make Up)
Functions 1
Functions 2
Functions 3 (Spring 2023)
Functions 4 (Spring 2023 - Make Up)
Counting: Standard Models
Basic Principles of Counting
Counting Examples
Permutations
Permutations Example
Groups and Circular Permutation Example
Identical Objects Example 1
Identical Objects Example 2
Identical Objects Example 3
Combination
n choose r
Committee Example 1
Committee Example 2
Ball Example 1
Ball Example 2
Binomial Coefficients and Identities
Binomial Theorem
Example 1
Example 2
Example 3
Pascal Identity
Combinatorial Proof
Example 4
Past Exams & Sample Midterm Part IV
Counting Standard Models 1
Counting Standard Models 2
Counting Standard Models 3
Counting Standard Models 4
Counting Standard Models 5
Counting Standard Models 6 (Spring 2023)
Counting Standard Models 7 (Spring 2023 - Make Up)
Counting Standard Models & Binomial Coefficients 1
Binomial Identities
Combinatorial Proof 1
2007 yılında Galatasaray Üniversitesi Bilgisayar Mühendisliği bölümünden birincilikle mezun olduktan sonra Fransa'da Kriptoloji üzerine Fransa hükümeti tarafından verilen bursla yüksek lisans yaptım. Devamında ikinci kez sınava girerek Boğaziçi Matematik bölümünü de bitirdim. Yaklaşık 15 yıldır üniversite öğrencilerine dersler vermekteyim.
1299 TL