Medipol Üniversitesi'ne özel dersler, soru çözümleri ve çıkmış sorular seni bekliyor. Hemen üye ol ve ücretsiz midterm dersini dene.
Ücretsiz Dersi AlMedipol biz geldik ! IND 2119550 dersi düşündüğün kadar zor değil; Dersimizdeki özet konu anlatımları ve kitabınızdaki bölüm sonu soru çözümleriyle konuyu öğrenecek, sonrasında son yılların çıkmış sınav sorularıyla antreman yapacaksın.
Tamamen senin okuluna özel hazırlanmış bu içerik akışıyla Lineer Cebir dersininden istediğin notu alacaksın.
Vectors: Linear Combination and Span
Vector Properties
Linear Combination 1
Linear Combination 2
Formal Definition of Linear Combination
Span of Vectors 1
Span of Vectors 2
Solutions of Homogeneous Linear Systems
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
Non-homogeneous Linear Systems
Solutions of Non-Homogeneous Linear Systems
Exam-like Question 1
Exam-like Question 2
Exam like Question 3
Exam like Question 4
Linear Independence
Linear Independent Sets
Linear Independence of Matrices
Special Theorem for Matrix Equation
Exam-like Questions 1
Exam-like Questions 2
Exam-like Question 3
Exam-like Question 4
Vector Spaces and Subspaces
Vector Spaces and Subspaces
Matrix Spaces & Matrix Subspaces
Polynomial Subspaces
Exam like Question 1
Exam like Question 2
Exam like Question 3
Exam like Question 4
Exam like Question 5
Exam like Question 6
Exam like Question 7
Exam like Question 8
Exam like Question 9
Exam like Question 10
Exam like Question 11
Exam like Question 12
Basis for Subspaces (Null,Column,Row Spaces)
Null Space & Column Space & Row Space
Bases for Col A & Row A & Null A
Exam like Question
Basis for General Subspaces
Basis for Vector Subspaces
Basis for Matrix Subspaces
Basis for Polynomial Subspaces
Basis for Polynomial Subspaces 2
Coordinate Systems (Vectors, Polynomials)
Coordinate Systems : Introduction
Coordinate Systems : Polynomials
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
Exam like Question 4
Exam like Question 5
Coordinate Systems (Matrices)
Coordinate Systems : Matrices 1
Coordinate Systems : Matrices 2
Coordinate Systems : Matrices 3
Coordinate Systems : Matrices 4
Change of Basis
Change of Basis : Vector Spaces
Change of Basis : Polynomials
Change of Basis: Matrices
Linear Transformations
Linear Transformations 1
Linear Transformation 2
Matrix of a Linear Transformation
Linearity of Transformations
Inverse of Linear Transformation 1
Inverse of Linear Transformation 2
Kernel and Range of Transformations
Basis for Kernel and Range of a Transformation
Basis for Kernel and Range of a Transformation 2
Basis for Kernel and Range of a Transformation 3
Linear Independence of Matrices
Basis for Kernel and Range of a Transformation 4
Basis for Kernel and Range of a Transformation 5
Basis for Kernel and Range of a Transformation 6
Transformations and Change of Basis
Transformation Matrix Relative to Basis 1
Transformation Matrix Relative to Basis 2
Transformation Matrix Relative to Basis 3
Exam like Question 1
Exam like Question 2
Eigenvalues and Eigenvectors
Eigenvalues & Eigenvectors : 3 Vital Steps
Eigenvalues & Eigenvectors: A Special Tip
A Matrix with Irrational Eigenvalues
Algebraic and Geometric Multiplicities 1
Algebraic and Geometric Multiplicities-2
Eigenspace of Matrices
Diagonalization
Diagonalization 1
Diagonalization 2
Exam like Question
Sample Final Problems - 1
Span of Vectors
Span of Vectors
Span of Vectors
Span of Vectors
Span of Vectors
Linear Independence
Linear Independence
Linear Independence
Linear Independence
Null & Column & Row Spaces 1
Null & Column & Row Spaces 2
Null & Column & Row Spaces 3
Null & Column & Row Spaces 4
Null & Column & Row Spaces 5
Column,Null and Row Spaces 1
Column,Null and Row Spaces 2
Column,Null and Row Spaces 3
Basis for Subspaces (Vectors)
Basis for Subspaces (Vectors)
Basis for Subspaces (Vectors)
Basis for Subspaces (Vectors)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Polynomials)
Basis for Subspaces (Polynomials)
Basis for Subspaces (Polynomials)
Basis for Subspaces (Polynomials)
Spanning Sets (Vectors)
Spanning Sets (Vectors)
Spanning Sets (Vectors)
Spanning Sets (Vectors)
Spanning Sets (Polynomials)
Spanning Sets (Polynomials)
Spanning Sets (Polynomials)
Spanning Sets (Matrices)
Linear Independence of Polynomials
Sample Final Problems - 2
Linear Transformations
Linear Transformations
Linear Transformations
Linear Transformations
Linear Transformation
Linear Transformation
Inverse of Linear Transformation
Inverse of Linear Transformation
Composite of Linear Transformation
Reflection of a Transformation
Reflection of a Transformation
Reflection of a Transformation
Basis for Kernel and Range
Basis for Kernel and Range
Basis for Kernel and Range
Basis for Kernel and Range
Transformations & Change of Basis 1
Transformations & Change of Basis 2
Transformations & Change of Basis 3
Transformations & Change of Basis 4
Transformations & Change of Basis 5
Transformations & Change of Basis 6
Transformations & Change of Basis 7
Transformations & Change of Basis 8
Transformations & Change of Basis 9
Eigenvalues
Diagonalization
Diagonalization
Diagonalization
Diagonalization
Diagonalization
Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
Unicourse şirketinin kurucu ortağıyım. 2016 senesinde Galatasaray Lisesinden mezun oldum. Geçtiğimiz dört sene içerisinde 2000 saatten fazla ders anlattım. Anlattığım dersler sırasıyla; Calculus, Çok değişkenli Calculus, Lineer Cebir, Differansiyel Denklemler, Uygulamalı İstatistik ve Stokastik Modelleme dersleridir. Doping Hafıza şirketinde 2017 - 2022 seneleri arasında CEO danışmanlığı yaptım. Koç Üniversitesi Endüstri Mühendisliği ve Ekonomi çift anadal programını tam burslu olarak, 3.96/4.00 not ortalamasıyla bitirdim. Kadıköy Modalıyım.
999 TL