Bu ders ile ENGR 201 sınavı dersindeki temel olasılık ve istatistik konseptleri olan: Permutation, Combination, Binomial Theorem, Rules of Probability, Conditional Probability, Independence, Bayes Theorem, Random Variable, PDF, CDF, Expected Value, Variance, Special Distributions kavramlarını çok iyi öğreneceksin ve her konu için bolca çıkmış sınav sorusuyla antreman yapacaksın.
Sampling and Descriptive Statistics
Introduction
Frequency Distribution
Example 1
Relative Frequency Distribution
Example 2
Cumulative Frequency Distribution
Example 3
Frequency Histogram
Measures of Central Tendancy
Example 7
Measures of Dispersion
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Counting, Combination and Permutation
Basic Principles of Counting
Counting Examples
Permutations
Permutations Example
Groups and Circular Permutation Example
Identical Objects Example 1
Identical Objects Example 2
Identical Objects Example 3
Combination
n choose r
Committee Example 1
Committee Example 2
Ball Example 1
Ball Example 2
Axioms of Probability
Sample Space and Events
Probability
Axioms of Probability
Some Rules
Coin Example
Dice Example
Card Example 1
Card Example 2
Ball Example
Set Example
Birthday Example
Conditional Probability, Bayes' Rule and Independence
Conditioning Events
Total Probability Rule
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Bayes' Rule
Bayes' Rule Example 1
Bayes' Rule Example 2
Independence
Independence Example 1
Independence Example 2
Sample Midterm Problems I
Counting 1
Counting 2
Counting 3
Counting 4
Axioms of Probability 1
Axioms of Probability 2
Axioms of Probability 3
Axioms of Probability 4
Conditional Probability 1
Conditional Probability 2
Conditional Probability 3
Conditional Probability 4
Independence 1
Independence 2
Conditional Probability and Independence
Bayes' Rule 1
Bayes' Rule 2
Bayes' Rule 3
Bayes' Rule 4
Bayes' Rule 5
Bayes' Rule 6
Bayes' Rule 7
Bayes' Rule 8
Bayes' Rule 9
Discrete Random Variables
Random Variables
Probability Mass Function
PMF Example 1
PMF Example 2
Cumulative Distribution Function
CDF Example 1
Expected Value
Expected Value Example 1
Expected Value Example 2
Variance
Variance Example 1
Variance Example 2
Special Discrete Distributions
Bernoulli Distribution Part 1
Bernoulli Distribution Part 2
Example 1
Example 2
Binomial Distribution Part 1
Binomial Distribution Part 2
Example 3
Example 4
Poisson Distribution Part 1
Poisson Distribution Part 2
Example 5
Example 6
Poisson Approximation to Binomial Distribution
Example 7
Geometric Distribution Part 1
Geometric Distribution Part 2
Example 8
Example 9
Sample Midterm Problems II
Discrete Random Variables 1
Discrete Random Variables 2
Discrete Random Variables 3
Discrete Random Variables 4
Discrete Random Variables 5
Discrete Random Variables 6
Discrete Random Variables 7
Discrete Random Variables 8
Discrete Random Variables 9
Discrete Random Variables 10
Discrete Random Variables 11
Binomial Distribution 1
Binomial Distribution 2
Binomial Distribution 3
Binomial Distribution 4
Poisson distribution 1
Poisson Distribution 2
Poisson Distribution 3
Poisson distribution 4
Geometric Distribution 1
Geometric Distribution 2
Geometric Distribution 3
Continuous Random Variables
Probability Density Function - PDF
Example 1
Cumulative Distribution Function - CDF
Example 2
Expected Value
Expected Value - Example 1
Expected Value - Example 2
Variance
Variance - Example 1
Special Continuous Distributions
Exponential Distribution
Example 3
Example 4
Memoryless Property
Example 5
Normal Distribution
Standard Normal Distribution
Reading Z Table - Option 1
Reading Z Table - Option 2
Example 6
Sample Midterm Problems III
Continuous Random Variables 1
Continuous Random Variables 2
Continuous Random Variables 3
Continuous Random Variables 4
Continuous Random Variables 5
Continuous Random Variables 6
Exponential Distribution 1
Exponential Distribution 2
Exponential Distribution 3
Exponential Distribution 4
Normal Distribution 1
Normal Distribution 2
Normal Distribution 3
Normal Distribution 4
Normal Distribution 5
Normal Distribution 6
Normal Distribution 7
Problems to Solve Before the Exam
Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13
2007 yılında Galatasaray Üniversitesi Bilgisayar Mühendisliği bölümünden birincilikle mezun olduktan sonra Fransa'da Kriptoloji üzerine Fransa hükümeti tarafından verilen bursla yüksek lisans yaptım. Devamında ikinci kez sınava girerek Boğaziçi Matematik bölümünü de bitirdim. Yaklaşık 15 yıldır üniversite öğrencilerine dersler vermekteyim.
2011 yılında Endüstri Mühendisliği okumak için başladığım Sabancı Üniversitesi'nden 2018 yılında Bilgisayar Mühendisi olarak mezun oldum. 11 yıldır Altun ismiyle başta Sabancı Üniversitesi olmak üzere çeşitli okullarda Endüstri ve Bilgisayar Mühendisliği alanlarında ders vermekteyim. Unicourse'ta sunduğum derslerin yanında eğitim departmanının da sorumluluğunu üstlenmekteyim.
1299 TL