İstinye Üniversitesi'ne özel dersler, soru çözümleri ve çıkmış sorular seni bekliyor. Hemen üye ol ve ücretsiz midterm dersini dene.
Ücretsiz Dersi Alİstinye biz geldik ! Mat 112 dersi düşündüğün kadar zor değil; Dersimizdeki özet konu anlatımları ve kitabınızdaki bölüm sonu soru çözümleriyle konuyu öğrenecek, sonrasında son yılların çıkmış sınav sorularıyla antreman yapacaksın.
Tamamen senin okuluna özel hazırlanmış bu içerik akışıyla Lineer Cebir dersininden istediğin notu alacaksın.
Vectors: Linear Combination and Span
Vector Properties
Linear Combination 1
Linear Combination 2
Formal Definition of Linear Combination
Span of Vectors 1
Span of Vectors 2
Solutions of Homogeneous Linear Systems
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
Vector Spaces and Subspaces
Vector Spaces and Subspaces
Polynomial Subspaces
Matrix Spaces & Matrix Subspaces
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
Exam-like Question 4
Exam-like Question 5
Exam-like Question 6
Basis for Subspaces (Null,Column,Row Spaces)
Null Space & Column Space & Row Space
Bases for Col A & Row A & Null A
Exam like Question
Basis for General Subspaces
Basis for Vector Subspaces
Basis for Matrix Subspaces
Basis for Polynomial Subspaces
Basis for Polynomial Subspaces 2
Exam Practice
Basis for Subspaces (Vectors)
Basis for Subspaces (Vectors)
Basis for Subspaces (Vectors)
Basis for Subspaces (Vectors)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Matrices)
Basis for Subspaces (Polynomials)
Basis for Subspaces (Polynomials)
Basis for Subspaces (Polynomials)
Basis for Subspaces (Polynomials)
Spanning Sets (Vectors)
Spanning Sets (Vectors)
Spanning Sets (Vectors)
Spanning Sets (Vectors)
Spanning Sets (Polynomials)
Spanning Sets (Polynomials)
Spanning Sets (Polynomials)
Spanning Sets (Matrices)
Linear Independence of Polynomials
Coordinate Systems (Vectors, Polynomials)
Coordinate Systems : Introduction
Coordinate Systems : Polynomials
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
Exam like Question 4
Exam like Question 5
Coordinate Systems (Matrices)
Coordinate Systems : Matrices 1
Coordinate Systems : Matrices 2
Coordinate Systems : Matrices 3
Coordinate Systems : Matrices 4
Change of Basis
Change of Basis : Vector Spaces
Change of Basis : Polynomials
Change of Basis: Matrices
Eigenvalues and Eigenvectors
Eigenvalues & Eigenvectors : 3 Vital Steps
Eigenvalues & Eigenvectors: A Special Tip
A Matrix with Irrational Eigenvalues
Algebraic and Geometric Multiplicities 1
Algebraic and Geometric Multiplicities-2
Eigenspace of Matrices
Diagonalization
Diagonalization 1
Diagonalization 2
Exam like Question
Exam Practice
Eigenvalues
Diagonalization
Diagonalization
Diagonalization
Diagonalization
Diagonalization
Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
Orthogonality and Orthogonal Complement
Key concepts for orthogonality
Orthogonal Complement
Orthagonal Complement 2
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
Exam like Question 4
Orthogonal Sets and Bases
Orthogonal Sets and Basis
Advantage of an Orthogonal Basis
Orthonormal Sets and Basis
Orthogonal Matrix
Orthogonal Projection
Orthogonal Projection 1
Orthogonal Projection 2
Exam-like Question 1
Exam-like Question 2
Exam-like Question 3
The Gram-Schmidt Process
The Gram-Schmidt Process 1
The Gram-Schmidt Process 2
Exam like Question 1
Exam like Question 2
Exam Practice
Orthogonal Complement and Basis
Orthogonal Complement and Basis
Orthogonal Complement and Projections
Orthogonal Complement and Basis
Orthogonal Projections
Orthogonal Basis
Orthonormal Basis
Orthonormal Basis
The Gram-Schmidt Process
Orthonormal Basis
Orthonormal Basis
Orthonormal Basis
The Gram-Schmidt Process
Orthogonal Matrix
Orthonormal Basis
Orthonormal Basis
Orthonormal Basis & Eigenvectors
Orthonormal Basis & Eigenvectors
Orthonormal Basis & Eigenvectors
Orthogonal Matrix
Orthogonal Matrix
Orthogonal Matrix
Co-Founder & CEO
Unicourse şirketinin kurucu ortağıyım. 2016 senesinde Galatasaray Lisesinden mezun oldum. Geçtiğimiz dört sene içerisinde 2000 saatten fazla ders anlattım. Anlattığım dersler sırasıyla; Calculus, Çok değişkenli Calculus, Lineer Cebir, Differansiyel Denklemler, Uygulamalı İstatistik ve Stokastik Modelleme dersleridir. Doping Hafıza şirketinde 2017 - 2022 seneleri arasında CEO danışmanlığı yaptım. Koç Üniversitesi Endüstri Mühendisliği ve Ekonomi çift anadal programını tam burslu olarak, 3.96/4.00 not ortalamasıyla bitirdim. Kadıköy Modalıyım.
999 TL