İstinye Üniversitesi'ne özel dersler, soru çözümleri ve çıkmış sorular seni bekliyor. Hemen üye ol ve ücretsiz midterm dersini dene.
Ücretsiz Dersi AlBu ders ile hem bir sürü soru çözmüş, hem kendini denemiş, hem de konuların püf noktalarını öğrenmiş olacaksın.
Kolayca yüksek notlar alabilmen için özenle hazırlanmış video derslerlerimizi izle. Çıkma ihtimali yüksek ve çıkmış soruların soru çözümleriyle sınava en iyi şekilde hazırlan. Hızını sen ayarla. İstediğin yerde hızlandırır, dersleri istediğin kadar tekrar et.
Logic Part 1 : Basics
Introduction
Negation of a Proposition
Compound Propositions
Truth Table 1
Truth Table 2
Exam like Question 1
Exam like Question 2
Tautology
Exam like Question 3
Contradiction
Converse Inverse Contrapositive
Exam like Question 4
Exam-like Question 5
Logical Equivalences & De Morgan's Laws
Logical Equivalences & De Morgan's Laws 2
Exam like Question 6
Exam like Question 7
Exam like Question 8
Logic Part 2 : Quantifiers
Universal Quantifiers
Existential Quantifiers
Truth Value of Propositions with Quantifiers
Exam like Question 1
Nested Quantifiers
Exam like Question 2
Exam like Question 3
Negation of Nested Quantifiers
Exam like Question 4
Exam like Question 5
Translations
Exam like Question 6
Exam like Question 7
Exam like Question 8
Translation of Statements With Multiple Variables
Exam like Question 9
Exam like Question 10
Rules of Inferences
Valid Argument
Rules of Inferences
Example 1
Example 2
Example 3
Using Rules of Inferences to Build Arguments
Example 4
Sample Midterm Problems I
Logic Basics 1
Logic Basics 2
Logic Basics 3
Logic Basics 4
Logic : Quantifiers 1
Logic : Quantifiers 2
Logic : Quantifiers 3
Logic - Quantifiers 4
Logic - Quantifiers 5
Logic - Quantifiers 6
Logic - Translation 1
Logic - Translation 2
Logic - Translation 3
Logic - Translation 4
Rules of Inferences 1
Rules of Inferences 2
Rules of Inferences 3
Proof Methods
Direct Proof
Example 1
Example 2
Example 3
Example 4
Proof by Contrapositive
Example 1
Example 2
Example 3
Proof by Contradiction
Example 1
Example 2
Proof by Counterexample
Example 1
Sets
Definition and Notation
Subset
Example 1
Union and Intersection of Two Sets
Difference of Two Sets
Set Identities
Example 2
Power Set
Example 3
Cartesian Product
Example 4
Example 5
Proof Example 1
Proof Example 2
Functions
Definition of Function
Example 1
Number of Functions
Injective Functions
Example 2
Example 3
Example 4
Number of Injective Functions
Surjective Functions
Example 5
Example 6
Example 7
Bijective Function
Inverse Function
Example 8
Example 9
Sequences and Summation
Definition of Sequence
Arithmetique Sequence
Example 1
Geometric Sequence
Example 1
Sum Notation
Example 1
Sample Midterm Problems II
Direct Proof 1
Direct Proof 2
Proof by Contrapositive 1
Proof by Contrapositive 2
Proof by Contradiction 1
Proof by Contradiction 2
Proof by Contradiction 3
Sets 1
Sets 2
Sets 3
Functions 1
Functions 2
Functions 3
Functions 4
Functions 5
Sets & Function
Summation and Function
Algorithms and Growth of Functions
What is an algorithm?
Algorithm and Pseudocode 1
Algorithm and Pseudocode 2
Exam Like Question 1
Linear Search Algorithm
Binary Search Algorithm
Bubble Sort Algorithm
Big-O Notation
Example 1
Example 2
Example 3
Example 4
Sum Property of Big-O Notation
Multiplication Property of Big-O Notation
Example 1
Example 2
Big-Omega Notation
Big-Theta Notation
Example 1
Example 2
Number Theory
Definition of Divisibility
Example 1
Example 2
Example 3
Division Algorithm
Definition of Modular Arithmetic
Example 1
Properties of Modular Arithmetic
Example 1
Example 2
Prime Numbers
Example 1
Example 2
Example 3
GCD Greatest Common Divisor
LCM Least Commun Multiple
Example 1
Euclidian Algorithm
Example 1
Bézout Identity
Example 1
Example 2
Example 3
Inverse of a Number in Modular Arithmetic
Fermat's Little Theorem
Solving Linear Congruences
Example 1
Example 2
Sample Midterm Problems III
Number Theory 1
Number Theory 2
Number Theory 3
Number Theory 4
Number Theory 5
Growth of Functions 1
Growth of Functions 2
Growth of Functions 3
Growth of Functions 4
Algorithms 1
Algorithms 2
Algorithms 3
Eğitmen
2007 yılında Galatasaray Üniversitesi Bilgisayar Mühendisliği bölümünden birincilikle mezun olduktan sonra Fransa'da Kriptoloji üzerine Fransa hükümeti tarafından verilen bursla yüksek lisans yaptım. Devamında ikinci kez sınava girerek Boğaziçi Matematik bölümünü de bitirdim. Yaklaşık 15 yıldır üniversite öğrencilerine dersler vermekteyim.
999 TL
🎓 İstinye Üniversitesinde öğrencilerin %92'si tüm paketi alarak çalışıyor.