Bilgi biz geldik! Üniversitedeki en zor Matematik dersi olarak kabul edilen Math 102 dersi artık düşündüğün kadar zor değil! Dersimizde önce özet konu anlatımları ve kitaptaki ödev sorularının çözümleriyle öğrenecek, sonrasında son 10 yılın tüm çıkmış sınav sorularıyla antreman yapabileceksin.
Multivariable Functions and Surfaces
Domain of Multivariable Functions
Level Curves
Level Curves and Level Surfaces
Graphs of Surfaces
Limits and Continuity of Multivariable Functions
Limits of Multivariable Functions 1
Limits of Multivariable Functions 2
Limits of Multivariable Functions 3
The Squeeze Theorem
Continuity of Multivariable Functions
Limits with Polar Coordinates
Partial Differentiation
Limit Definition of Partial Derivative
Partial Differentiation Rules 1
Partial Differentiation Rules 2
Higher Order Partial Differentiation
Implicit Differentiation
Implicit Differentiation I
Implicit Differentiation II
Implicit Differentiation III
Implicit Higher Differentiation
The Chain Rule
Chain Rule 1
Chain Rule 2
Chain Rule 3
Tangent Plane
Equation of a Tangent Plane 1
Equation of a Tangent Plane 2
Horizontal Tangent Plane
Normal Vector to a Multivariable Function
Midterm Practice Part I
Limit of Multivariable Functions 1
Limit of Multivariable Functions 2
Limit of Multivariable Functions 3
Limit of Multivariable Functions 4
Limit of Multivariable Functions 5
Limit of Multivariable Functions 6
Limit of Multivariable Functions 7
Limit of Multivariable Functions 8
Limit of Multivariable Functions 9
Limit of Multivariable Functions 10
Continuity 1
Continuity 2
Definition of Partial Derivative 1
Definition of Partial Derivative 2
Partial Derivative 1
Partial Derivative 2
Partial Derivative 3
Partial Derivative 4
Partial Derivative 5
Partial Derivative 6
Higher Order Differentiation 1
Higher Order Differentiation 2
Higher Order Differentiation 3
Higher Order Differentiation 4
Higher Order Differentiation 5
Tangent Plane 1
Tangent Plane 2
Tangent Plane 3
Tangent Plane 4
Tangent Plane and Normal Line 1
Tangent Plane and Normal Line 2
Tangent Plane and Normal Line 3
Chain Rule 1
Chain Rule 2
Chain Rule 3
Chain Rule 4
Chain Rule 5
Chain Rule 6
Chain Rule and Tangent Plane
Gradient and Directional Derivatives
Gradient Vector
Directional Derivative
Gradient and Directional Derivative
Extreme Values
Extreme Values
Extreme Values on Restricted Regions 1
Extreme Values on Restricted Regions 2
Lagrange Multipliers
Optimization With Lagrange Multipliers
Lagrange Multipliers Example-1
Lagrange Multipliers Example-2
Lagrange Multipliers Example-3
Midterm Practice Part II
Gradient and Tangent Plane 1
Gradient and Tangent Plane 2
Gradient and Tangent Plane 3
Gradient and Directional Derivative 1
Gradient and Directional Derivative 2
Gradient and Directional Derivative 3
Gradient and Directional Derivative 4
Gradient and Directional Derivative 5
Gradient and Directional Derivative 6
Gradient and Directional Derivative 7
Extreme Values 1
Extreme Values 2
Extreme Values 3
Extreme Values 4
Extreme Values 5
Extreme Values 6
Extreme Values on Closed Region 1
Extreme Values on Closed Region 2
Extreme Values on Closed Region 3
Extreme Values on Closed Region 4
Extreme Values on Closed Region 5
Extreme Values on Closed Region 6
Lagrange Multipliers 1
Lagrange Multipliers 2
Lagrange Multipliers 3
Lagrange Multipliers 4
Lagrange Multipliers 5
Lagrange Multipliers 6
Lagrange Multiplier 7
Double Integrals in Cartesian Coordinates
Intuition: Double Integrals
Volume Calculation with Double Integration
Area Calculation with Double Integral
Sketching the Area of Integration 1
Sketching the Area of Integration 2
Sketching the Area of Integration 3
Reversing the Order of Integration 1
Reversing the Order of Integration 2
Reversing the Order of Integration 3
Double Integral in Polar Coordinates
Cartesian to Polar Coordinates 1
Cartesian to Polar Coordinates 2
Polar to Cartesian Coordinates
Double Integrals in Polar Coordinates 1
Double Integrals in Polar Coordinates 2
Double Integrals in Polar Coordinates 3
Double Integrals in Polar Coordinates 4
Midterm Practice Part III
Reversing the Order of Integration 1
Reversing the Order of Integration 2
Reversing the Order of Integration 3
Reversing the Order of Integration 4
Double Integral in Polar Coordinate 1
Double Integral in Polar Coordinate 2
Double Integral in Polar Coordinate 3
Double Integral in Polar Coordinate 4
Double Integral in Polar Coordinate 5
Double Integral in Polar Coordinate 6
Double Integral in Polar Coordinate 7
Double Integral in Polar Coordinate 8
Double Integral in Polar Coordinate 9
Double Integral in Polar Coordinate 10
Sınav Provası 1 : Fall 2021 Midterm Exam
Limits of Multivariable Functions
Limits of Multivariable Functions
Directional Derivatives
Critical Points (Max-Min and Saddle Points)
Lagrange Multipliers
Double Integral : Reversing the Order of Integration
Sınav Provası 2 : Spring 2018 Midterm Exam
Limits of Multivariable Functions
Limits of Multivariable Functions
Tangent Planes and Normal Lines
Extreme Values over Closed Regions
Double Integrals in Polar Coordinates
Sınav Provası 3: Spring 2021 Midterm Exam
Limit of Multivariable Functions
Limit of Multivariable Functions
Limit of Multivariable Functions
Reversing the Order of Integration
Extreme Values
Directional Derivative
Double Integrals in Poolar Coordinates
Change of Variable: The Jacobian
Sınav Provası 4: Spring 2023 Midterm Exam
Plane Equations
Limits of Multivariable Functions
Limits of Multivariable Functions
Directional Derivatives
The Chain Rule
Double Integrals in Cartesian Coordinates
Extreme Values over Closed Regions
Reversing the order of Integration
Double Integrals in Poolar Coordinates
Yeni Sınav Provası : Spring 2024 Midterm Exam
Graphs and Surfaces in 3D
Domain of Multivariable Functions
The Limit of Multivariable Functions
The Limit of Multivariable Functions
Higher Order Partial Derivative
The Chain Rule
Critical Points (Max-Min and Saddle Points)
Extreme Values on Closed Region
The Lagrange Multipliers
Reversing the order of Integration
Double Integrals in Cartesian Coordinates
Double Integrals in Cartesian Coordinates
Double Integrals in Polar Coordinates
Co-Founder & CEO
Unicourse şirketinin kurucu ortağıyım. 2016 senesinde Galatasaray Lisesinden mezun oldum. Geçtiğimiz dört sene içerisinde 2000 saatten fazla ders anlattım. Anlattığım dersler sırasıyla; Calculus, Çok değişkenli Calculus, Lineer Cebir, Differansiyel Denklemler, Uygulamalı İstatistik ve Stokastik Modelleme dersleridir. Doping Hafıza şirketinde 2017 - 2022 seneleri arasında CEO danışmanlığı yaptım. Koç Üniversitesi Endüstri Mühendisliği ve Ekonomi çift anadal programını tam burslu olarak, 3.96/4.00 not ortalamasıyla bitirdim. Kadıköy Modalıyım.
1499 TL
🎓 Bilgi Üniversitesinde öğrencilerin %92'si tüm paketi alarak çalışıyor.